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Theoretical and Experimental Results on the Charge Transport in
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The dynamics of the plasma discharge through spontaneous symmetry breaking as double layer Langmuir,
anodic patterns etc., is treated by means of the fractal description. Considering that the charge carrier
movements take place on fractal curves, the electric charge transport is studied in an extended model of
scale relativity. Using the motion equation for the complex speed field for the irrotational movement the
generalized Schrödinger equation is obtained, and in the absence of dissipation a generalized Korteweg de
Vries type equation is obtained. The process is also analyzed at the microscopic scale, when the electrical
conductance increase is controlled by means of the soliton coherence. When the external field exceeds a
critical value, the solitons which stocks the energy break down and simultaneously release the energy to the
environment. The same mechanism can explain the charge transport in composite materials (e. d.
nanostructures). Moreover, some correspondences between the theoretical model and the behaviour of the
patterns generated by laser ablation are analyzed.
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Turbulence is not only active on a wide range of length
scales, but it is filled with localized coherent structures
that make quantities such as energy, anisotropy and
pressure highly intermittent. The plasma turbulence is
usually characterized by assuming that the fluctuations
are randomly distributed in space and time [1]. It was
shown that the turbulences in a plasma discharge have
the same origin as the periodical ones, but that in this case,
stochastic causes decide about the moment when the
unstable state of one or more double layers (DLs), coupled
by current, starts its proper evolution process [2]. The
experimental data evidence that the global evolution of
the plasma discharge containing a system of DLs is the
result of the mutual influence of two or more individual
DLs coupled by the current flowing through them [3-6].
The chaotic regime observed as non-coherent variations
of the current appears when the correlations between the
proper dynamics of each of DLs do not exist and each of
their dynamics starts at random, independently  of each
other. The observed behavior is similar to the chaotic
dynamics of coupled non-linear oscillators [7]. Studying
the evolution of an oscillating DL, the transition to chaos
can be done by various ways:

- for small values of the discharge current in diffusion
plasma, by the appearance of sub-harmonics with
amplitudes higher than those of the basic frequency;

- for intermediary values of the discharge current, by the
appearance of sub-harmonics and also by enhancing the
frequency spectrum;
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-  for high values of the discharge current, by enhancing
the frequency spectrum, leading to the generation of
frequency bands with peaks close to the noise level.

Two general properties of turbulence in plasma
discharge resulted:

a) non-linearity, a basic property of all numerical models
of chaos;

b) intermittency, which causes the characteristics of
turbulence change over a relatively short time or space
scale, that necessitates the use of suitable statistical
description in order to study the long term dynamical
behavior.

On such a description is based the fractal formalism [8-
10].

A fractal structure is a manifestation of the universality
of self-organization processes in the plasma discharge, a
result of a sequence of spontaneous symmetry breaking.
The space-time itself may be a fractal. In such a context,
taking into account the way by which the energy of the
discharge plasma is obtained, we distinguish two ways in
which self-organized structures can be generated [11-13].

The intermittent self-organization
If the discharge plasma receives energy gradually and

continuously, its evolution will depend on the non-linearity
of the system and on the information exchange between
the system and the medium. The system evolves to a critical
state due to the random fluctuations; intermittently ordered
structures appear in the system and its energy varies
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irregularly between the local maximum and minimum of
the vicinity of the critical state. Experimentally, the  critical
state is obtained, for example, close to the ionization
potential of the gas (for details see [3-6]);

Cascade self-organization
If the energy is pumped suddenly into the discharge

plasma and then cut off from the external power source,
its dynamics will be a relaxation towards a stable self-
organized state. The condition is that the energy pumping
time be shorter than the dynamic response time of the
plasma. In these conditions, the plasma “sees” the energy
pumping process as a sudden one.

The dynamics of the transition of a plasma discharge
from “disorder” to “order” needs a new type of description:
the fractal one, which includes both. So, this paper attempts
to build a dynamics of the “multiparticle” systems on a
fractal time-space. This will be applied to the study of the
anodic patterns in plasma discharges, double layer
Langmuir, etc., by means of the spontaneous symmetry
breaking mechanism. Moreover, some considerations on
the charge transport mechanism in nanostructures is
considered.

Theoretical model
Scale relativity [14] is a new approach to understand

quantum mechanics, and, moreover, physical domains
involving scale laws, such as chaotic systems. It is based
on a generalization of Einstein’s principle of relativity to
scale transformations. Namely, one redefines space-time
resolutions as characterizing the state of scale of reference
systems, in the same way as speed characterizes their
state of motion. Then one requires that the laws of physics
apply whatever the state of the reference system, of motion
(principle of motion-relativity) and of scale (principle of
SR). The principle of SR is mathematically achieved by the
principle of scale-covariance, requiring that the equations
of physics keep their simplest form under transformations
of resolution.

According to scale relativity, a non-differentiable
continuum is necessarily fractal and the trajectories in such
a space (or space-time) own (at least) the following three
properties:

- the test particle can follow an infinity of potential
trajectories: this leads us to use a fluid-like description
(fractal fluid);

- the geometry of each trajectory is fractal (of fractal
dimension FD -  [15] or, in particular, of fractal dimension

FD =2 as in Nottale’s approach of the SR). Each
elementary displacement is then described in terms of
the sum dX=dx+dζ, of a mean classical displacement dx
= vdt and of a fractal fluctuation dζ, whose behaviour
satisfies the principle of SR (in its simplest Galilean version).
It is such that: and

 where D defines the fractal/non-
fractal transition, i.e. the transition from the explicit scale
dependence to scale independence. The existence of this
fluctuation implies introducing new second and third order
terms in the differential equation of motion;

- time reversibility is broken at the infinitesimal level:
this can be described in terms of a two-valuedness of the
velocity vector,  v+ the “forward” speed and v- the
“backward” speed, for which we use a complex
representation,

 These three effects can be combined to construct a
complex time-derivative operator [16],

 +

so that the first Newton’s principle in its covariant form
becomes δδδδδV/dt = 0, i.e..

                     

with  
Therefore, the sum of the local time dependence, ∂tV,

of the convective term, V . V,  of the dissipative one, ΔV,
and of the dispersive one, 3V is null in any point of the
fractal space-time. This result shows that transport process
[17], in plasmas has hysteretic properties [18, 19]. The
fractal fluid can be described by Kelvin-Voight or Maxwell
rheological model with the aid of complex quantities, i.e.
the complex speed field, the complex acceleration field
etc. and complex structure coefficients, i.e. the imaginary
viscosity coefficient, η=iD(dt)(2/DF)-1as it will be shown
below.

We assume that the motion of the fractal fluid is
irrotational,  x V =0, and then we can choose V of the
form

.
(3)

In these conditions, Eq. (2) takes the form

(4)
and ψ satisfies a generalized Schrödinger type equation

(5)

Particularly, when the dispersion is absent, Eq. (4)
becomes a generalized Navier-Stoke (GNS) type equation,

(6)

with imaginary viscosity coefficient, η = iD(dt)(2/DF)-1. From
here, using Eq. (3), the Schrödinger type equation results

(7)

Moreover, for D =η/2m, with η the reduced Planck’s
constant, m the rest mass of the test particle and for the
fractal dimension, DF = 2 , i.e. the Nottale’s approach [14],
the previous equation is reduced to standard Schrödinger
equation.

Correspondences with known theoretical results
In the particular case when the dissipation is absent,

Eq.(4) becomes a generalized Korteweg de Vries (GKdV)
type equation,

(1)

(2)
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                (8)

Let us choose the function    with    the
amplitude and S the phase. By substituting the complex
velocity field (3), 

  in Eq. (8), and separating the real and
imaginary parts, we obtain the equation system,

    (9.a,b)

In the differentiable case, i.e. at the macroscopic scale,
u=0 or, ρ=const., and for the one-dimensional case, with
the dimensionless parameters,

and the normalizing conditions

Eqs. (9a,b) take the form,

(10)

These equations have the solution,

(11)
where cn is the Jacobi’s elliptic function of s modulus [20],
K(s), E(s) are the elliptic complete integrals, and  ξo
constant of integration. As a result, at the macroscopic
scale, the electrical charge transport in plasmas is achieved
by one-dimensional cnoidal oscillation modes of the charge
current density.

This process is characterized by:
-  the normalized wave length

   (12)

 -  the normalized phase speed

(13)

- and the normalized group speed,

(14)

 In such a conjecture, the following results:
i) by eliminating the parameter a from relations (12)

and (13), one obtains the dispersion relation, 
with .

By numerically evaluating the quantity A(s), it results
that only for s = 0 ÷ 0.7, A(s) ≈ const, and the dispersion
equation takes then the form vfλ

2 = const.

ii) the parameter s becomes a measure of the electric
charge transfer in plasmas. Thus, for  s→0, λ, vf  and vg are
small, while for , s→1, λ, vf ,  and vg are high.

iii) the one-dimensional cnoidal oscillation modes
contain as subsequences:

a) for  s=0 the one-dimensional harmonic waves:
b) for s→0 the one-dimensional waves packet;
c) for s = 1 the one-dimensional soliton;
d) for  s →1 the one dimensional solitons packet.
The subsequences a, b describe the electric charge

transport in a non-quasi-autonomous regime (for details
see [18, 19], while the subsequences c, d describe the
electric charge transport in a quasi-autonomous regime.
Therefore, these two regimes (non-quasi-autonomous and
quasi-autonomous) are separated by the 0.7 structure, a
value in agreement with the experimental data [21].

The previous results show, through the normalized group
speed (14), an increase of the charge transport in plasmas
by means of quasi-autonomous structures. They can
provide a possible explanation of the anomalous incre M.-
A . ase of the electrical conductance that was
experimentally observed in [18, 19].

Let us now study the previous phenomenon in the non-
differential case, i.e. at the microscopic scale. This can be
achieved by the substitutions  and

  in  (10). By an adequate choice of
the integration constants, it becomes,   i.e. a
Ginzburg-Landau type equation [22]. The following results:

 1) the η coordinate has dynamic significations and the
variable f has probabilistic significance. The space-time
becomes fractal  [14];

2) according to [23] we can build a field theory with
spontaneous symmetry breaking. The fractal kink solution,

(15)

spontaneously breaks the “vacuum” (the minimum energy
states of the system) symmetry  by tunneling, and
generates coherent structures. This mechanism is similar
to the one of superconductivity [24]. In this case, anodic
patterns, double layer Langmuir etc., are generated;

3) the normalized fractal potential takes a very simple
expression which is directly proportional with the density
of states of the fractal fluid,

.
(16)

When the density of states, f2, becomes zero, the fractal
potential takes a finite value, Q = 1. The fractal fluid is
normal (it works in a non-quasi-autonomous regime) and
there are no coherent structures in it. When f2  becomes 1,
the fractal potential is zero, i.e. the entire quantity of energy
of the fractal fluid is transferred to its coherent structures.
Then the fractal fluid becomes coherent (it works in a
quasi-autonomous regime). Therefore one can assume
that the energy from the fractal fluid can be stocked by
transforming all the environment’s entities into coherent
structures and then ‘freezing’ them. The fractal fluid acts
as an energy accumulator through the fractal potential
Eq.(16). Particularly, Eq.(15) corresponds to the double layer
potential distribution, while Eq.(16) gives the double layer
field distribution;

4) by substituting (15) in (16) the fractal potential (16)
becomes a soliton,

(17)
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In certain conditions of an external load (e.g. an external
stress) the soliton breaks down (blows up) a free energy.
As a result, the plasmas energy increases unexpectedly.

Correspondences with experimental results
Laser produced plasma (LPP) is a topic of growing

interest in different fields such as material processing[25,
26], diagnostic techniques[27] and space applications.
Pulsed laser deposition has been successfully employed
for the deposition of thin films of classical and novel
materials [25, 28]. The possibility of producing species in
LPP with electronic states far from chemical equilibrium
enlarges the potential of making novel materials that would
be unattainable under thermal conditions.

For the experiments involving the interaction of intense
laser pulses with matter, it is desirable to know
directionality, velocity and other parameters of ejected
plasma plume far from the target. The plume evolution
includes two important parts: in the initial stage, i.e., during
the laser energy deposition, the one-dimensional
expansion takes place (large laser spot size compared with
the skin depth); after some time, the plasma cloud
becomes truly three-dimensional [29, 30, 31]. According
with ref. [31, 32], both the elementary physical processes
which require different scale times, and the patterns
evolution [32] that requires different degrees of freedom
(e.g., from 1, at the initial stages, to 3, at the final stages of
the patterns induced by laser produced plasma), imply a
non-differentiable space-time, i.e., fractals [33 - 40].
Moreover, the dynamic of the plasma transition from
“disorder” to “order” needs also a fractal description. In
some papers [31, 32], a mathematical model to describe
some characteristics of the laser produced plasma
expansion was established in the frame of scale relativity
theory for an arbitrary topological dimension DF . The
numerical results and the analytical ones in the particular
case  DF = 2 are compared with our experimental data
[31, 32].

Experimentally  the plasma was generated by laser
ablation of an aluminum target using 532 nm radiation
pulses from a Nd:YAG laser [32]. The laser pulse energy
ranges from 10 to 80 mJ, in a pulse time-width of 10 ns,
and it has been focused by a f = 25 cm lens at normal
incidence on a aluminum target placed in a vacuum
chamber (pressure <10-6 Torr), to obtain the spot diameter

at the impact point of 300 μm. The formation and dynamics
of the plasma plume have been studied by means of an
intensified charge-coupled device (ICCD) camera (PI MAX
576X384, gating time 20 ns) placed orthogonal to the
plasma expansion direction. In figure  1 the ICCD images
of the plasma plume at different times after the laser pulse
are given. Successive pulses of energy 40 mJ were used.
The images of these structures reveal a splitting process
of the plasma blobs. Analyzing figure 1 we conclude the
followings:

- in the range time 10-50 ns after the laser pulse, the
visible emitting regions of plasma are almost stationary
and they form two structures each having a maximum
emissive region;

- by measuring the position of the maximum emissivity
at different times, a linear dependence resulted. Then, the
velocities of the two plasma formations have been
calculated as being, v1=4.66  x 104 m/s  , for the first plasma
formation, and, v2=6.9 x 103 m/s for the second structure
[31].

Theoretically, the velocity of first plasma structure can
be roughly estimated by identifying it with the velocity of
the vaporization front. Thus, by using the method from refs.
[33 - 40], the energy conservation law gives, v1=F/ρ(λv+c
. Tv), where F represents the laser fluency, ρ the target
density, λV the vaporization heat, c the specific heat, and Tv
the vaporization temperature. In our experiment
(aluminum target), ρ = 2702 kg/m3, λV = 293 kJ/mol, c =
0.9 J/(g . K) and Tv= 2792 K, and with F=5.7 x 1013 W/m2,
it results v1=7.1 x 104 m/s. The speed of the second plasma
structure corresponds to the average speed of the shock
wave that is induced and maintained by the energy
absorbed from the laser beam. By using the method from
refs. [33 - 40], and the energy conservation law, it results
the expression, ν2=[2γ(γ -1)F/ρ]1/3. For the same laser
fluency and the adiabatic index γ =5/3 the previous relation
gives v2=3.6 x 103 m/s. These results are in a reasonable
agreement with our experimental data, having the same
order of magnitude.

Conclusions
Considering that the charge carrier movements take

place on fractal curves, the electric charge transport is
studied in an extended model of scale relativity.

An equation of motion is deduced for the complex speed
field, where the local complex acceleration, convection,

Fig. 1. The evolution of visible emission
from the aluminium laser-plasma plume
recorded using an ICCD PI MAX camera

(gating time 20 ns). The laser beam
energy was 40 mJ/ pulse and

background pressure 10-6 Torr
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dissipation and dispersion are reciprocally compensating.
Using this equation, for the irrotational movement the
generalized Schrödinger equation is obtained. The absence
of the dispersion implies a generalized Navier-Stokes type
equation, and from here, for the irrotational movement and
fractal dimension DF = 2, the usual Schrödinger equation
resulted.

 The absence of dissipation implies a generalized
Korteweg de Vries type equation. In the one-dimensional
macroscopic case, two flowing regimes (quasi-
autonomous and non-quasi-autonomous) of the charge
carriers are evidenced, the separation between them being
made by the 0.7 structure that is experimentally observed.
In such a conjecture, the increase of the electrical
conductance in plasmas is connected with the increase of
the group velocity at the passage from non-quasi-
autonomous to quasi-autonomous regime.

 At microscopic scale, the electrical conductance
increase is controlled by means of the soliton coherence.
When the external field exceeds a critical value, the soliton
which stocks the energy breaks down and simultaneously
releases the energy to the environment.

The same mechanism can explain the increase of the
electrical conductance in composite materials (e. d.
nanostructures), mainly in aluminium matrix composites.

Moreover, using the scale relativity theory model, some
experimental results (e. d. the velocity of plasma structures
generated by laser ablation) can be explained.
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